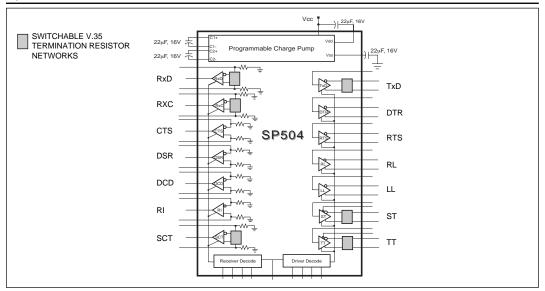


WAN Multi-Mode Serial Transceiver

■ +5V Only


- Seven (7) Drivers and Seven (7) Receivers
- Driver and Receiver Tri-State Control
- Reduced V.35 Termination Network
- Pin Compatible with the SP503
- Software Selectable Interface Modes:
 - -RS-232E (V.28) -RS-422A (V.11, X.21) -RS-449 (V.11 & V.10) -RS-485 -V.35 -EIA-530 (V.11 & V.10) -EIA-530A (V.11 & V.10) -V.36

Now Available in Lead Free

DESCRIPTION...

The **SP504** is a single chip device that supports eight (8) physical serial interface standards for Wide Area Network Connectivity. The **SP504** is fabricated using a low power BiCMOS process technology, and incorporates a **Sipex** patented (5,306,954) charge pump allowing +5V only operation. Seven (7) drivers and seven (7) receivers can be configured via software for any of the above interface modes at any time. The **SP504** is suited for DTE–DCE applications. The **SP504** requires only one external resistor per V.35 driver for compliant V.35 operation.

SPECIFICATIONS

 T_{A} = +25°C and V_{CC} = +5.0V unless otherwise noted.

	MIN.	TYP.	MAX.	UNITS	CONDITIONS
LOGIC INPUTS					
V _{IL} V _{IH}	2.0		0.8	Volts Volts	
LOGIC OUTPUTS					
V _{OL}	2.4		0.4	Volts Volts	I _{OUT} = +3.2mA I _{OUT} = –1.0mA
V _{OH} RS-485 DRIVER	2.4			VOIIS	$I_{OUT} = -1.011A$
TTL Input Levels					
V _{IL}			0.8	Volts	
VIH	2.0			Volts	
Outputs					
HIGH Level Output LOW Level Output	-0.3		+6.0	Volts Volts	
Differential Output	-0.3 ±1.5		±5.0	Volts	R. =549. C. =50pF
Balance		±0.2	_0.0	Volts	R _L =54 <u>Ω,</u> C _L =50pF V _T - V _T
Offset		+2.5		Volts	
Open Circuit Voltage	20.0		±6.0	Volts	B 540
Output Current Short Circuit Current	28.0	±250		mA mA	$R_L = 54\Omega$ Terminated in -7V to +10V
Transition Time		±230 20	40	ns	Rise/fall time, 10%–90%
Max. Transmission Rate	10	-	-	Mbps	$R_1 = 54\Omega$; Figure 3a
Propagation Delay					T_{A}^{-} @ 25°C & V _{CC} = +5V only
t _{PHL}	50	80	100	ns	Figures 3a and 5; $R_1 = 54\Omega$
t _{PLH} Differential Driver Skew	50	80 20	100 40	ns ns	C _L =50pF t _{PHL} – t _{PLH} ; T _A @ +25°C
RS-485 RECEIVER		20	-10	110	
TTL Output Levels					
V _{OL}			0.4	Volts	
V _{OH}	2.4			Volts	
Input HIGH Threshold	+0.2		+12	Volts	(a)-(b)
LOW Threshold	-7.0		-0.2	Volts	(a)-(b)
Common Mode Range	-7.0		+12.0	Volts	
HIGH Input Current					Refer to Rec. input graph
LOW Input Current			0.0		Refer to Rec. input graph
Receiver Sensitivity			±0.2	Volts	Over –7V to +12V common mode range
Input Impedance	12			kΩ	mode range
Max. Transmission Rate	10			Mbps	Figure 3a
Propagation Delay			100		$T_{A} = 25^{\circ}C \& V_{CC} = +5V \text{ only}$
t _{PHL}	80 80	110 110	180 180	ns	Figures 3a and 7; A is inverting and B is non-inverting.
t _{PLH} Differential Receiver Skew	00	30	100	ns ns	$ t_{PHL} - t_{PLH} ; T_A @ +25^{\circ}C$
V.35 DRIVER					
TTL Input Levels					All outputs measured w/
V _{IL}			0.8	Volts	150Ω termination resistor
V _{IH}	2.0			Volts	connected to the non-
Outputs					inverting outputs as shown
Outputs Differential Output	±0.44		±0.66	Volts	in Figure 18. R _ι =100Ω
Source Impedance	50	100	150	Ω	E
Short-Circuit Impedance	135	150	165	Ω	$V_{OUT} = -2V$ to +2V; A = B
Voltage Output Offset	-0.6	25	+0.6		19khna data tata i T. @ 05%
Transition Time Max. Transmission Rate	10	35	60	ns Mbps	48kbps data rate.; T _A @ 25°C R ₁ =100Ω
שמא. דומווטווווטטוווזמוט	10			iviupa	NL-10022

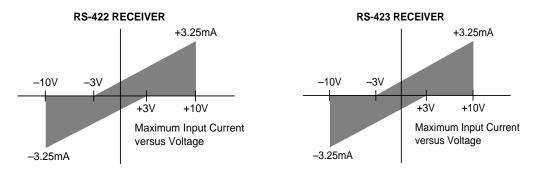
SPECIFICATIONS (Continued)

 $\rm T_{\rm A}$ = +25°C and $\rm V_{\rm cc}$ = +5.0V unless otherwise noted.

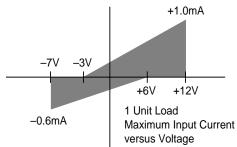
$I_A = +25^{\circ}C$ and $V_{cc} = +5.0V$ unless otherwi	MIN.	TYP.	MAX.	UNITS	CONDITIONS
V.35 DRIVER					
Propagation Delay					$T_A @ 25^{\circ}C \& V_{CC} = +5V \text{ only}$
t _{PHL}	50	80	100	ns	Figures 3b and 5
t _{PLH}	50	80	100	ns	-
Differential Driver Skew		30	40	ns	t _{PHL} – t _{PLH} ; T _A @ +25°C
V.35 RECEIVER					
TTL Output Levels					
V _{OL}			0.4	Volts	
V _{OH}	2.4			Volts	
Input					
Differential Threshold		±80		mV	
Input Impedance	90	100	110	Ω	
Short-Circuit Impedance	135	150	165	Ω	$V_{IN} = +2V$ to $-2V$
Max. Transmission Rate	10			Mbps	$T = 0.25^{\circ} C R V = 15V control$
Propagation Delay	100	130	200	ns	$T_A @ 25^{\circ}C \& V_{CC} = +5V$ only Figure 3b and 7; A is invert-
t _{PHL}	100	130	200	ns	ing and B is non-inverting.
t _{PLH} Differential Receiver Skew		30		ns	$ t_{PHL} - t_{PLH} ; T_A @ +25°C$
RS-422 DRIVER (V.11)					
TTL Input Levels					
V _{IL}			0.8	Volts	
	2.0		0.0	Volts	
Outputs					
Öpen Circuit Voltage,V _O			±6.0	Volts	R ₁ =3.9kΩ
Differential Output, V _T	±2.0		±5.0	Volts	R ₁ =100Ω
	0.5V ₀		0.67V ₀	Volts	T _A [™] @ + <u>25</u> °C V _T − V _T
Balance	-		±0.4	Volts	$ V_T - V_T $
Offset			+3.0	Volts	
Short Circuit Current			±150	mA	$V_{out} = 0V$
Power Off Current			±100	μΑ	$V_{cc}^{out} = 0V, V_{out} = \pm 0.25V$
Transition Time	10	20	40	ns Mhaa	Rise/fall time, 10%-90%
Max. Transmission Rate Propagation Delay	10			Mbps	R _L =100Ω; Figure 3a T _A @ 25°C & V _{CC} = +5V only
	50	80	100	ns	Figure 3a and 5;
t _{PHL} t _{PLH}	50	80	100	ns	$R_{DIFF} = 100\Omega$
Differential Driver Skew		20	40	ns	t _{PHL} – t _{PLH} ; T _A @ +25°C
RS-422 RECEIVER (V.11)					
TTL Output Levels					
V _{OL}			0.4	Volts	
V _{OH}	2.4			Volts	
Input					
HIGH Threshold	+0.2		+6.0	Volts	(a)-(b)
LOW Threshold	-6.0		-0.2	Volts	(a)-(b)
Common Mode Range	-7.0		+7.0	Volts	
HIGH Input Current					Refer to Rec. input graph
LOW Input Current				1/-14-	Refer to Rec. input graph
Receiver Sensitivity Input Impedance	1		±0.3	Volts	$V_{CM} = +7V \text{ to } -7V$
Max. Transmission Rate	4			kΩ Mbps	$V_{IN} = +10V \text{ to } -10V$
Propagation Delay				ivinha	T _A @ 25°C & V _{CC} = +5V only
t _{PHL}	80	110	180	ns	Figure 3a and 7; A is invert-
	80	110	180	ns	ing and B is non-inverting.
Differential Receiver Skew	-	30		ns	t _{PHL} – t _{PLH} ; T _A @ +25°C
RS-232 DRIVER (V.28)					
· · · · · · · · · · · · · · · · · · ·					
TTL Input Level					
TTL Input Level V _{IL} V _{IH}			0.8	Volts	

SPECIFICATIONS (Continued)

 $T_{A} = +25^{\circ}C$ and $V_{CC} = +5.0V$ unless otherwise noted.


	MIN.	TYP.	MAX.	UNITS	CONDITIONS
RS-232 DRIVER (V.28)					
Outputs					
HIGH Level Output	+5.0		+15	Volts	$R_L=3k\Omega$, $V_{IN}=0.8V$
LOW Level Output	-15.0		-5.0	Volts	$R_{L}=3k\Omega, V_{IN}=2.0V$
Open Circuit Voltage	-15		+15	Volts	
Short Circuit Current			±100	mA	$V_{OUT} = 0V$
Power Off Impedance	300		_100	Ω	$V_{cc} = 0V, V_{out} = \pm 2.0V$
Slew Rate			30	V/µs	$R_1 = 3k\Omega$, $C_1 = 50pF$
				1,40	$V_{CC} = +5.0V, T_A @ +25^{\circ}C$
Transition Time			1.56	μS	$R_1 = 3k\Omega, C_1 = 2500pF;$
				,	between $\pm 3V$, T _A @ $\pm 25^{\circ}C$
Max. Transmission Rate	120	230.4		kbps	$R_{L}=3k\Omega, C_{L}=2500pF$
Propagation Delay					T _A ^L @ 25°C ^L & V _{CC} = +5V or
t _{PHL}	0.5	1	4	μS	Measured from 1.5V of V _{IN}
t _{PLH}	0.5	1	4	μS	to 50% of V _{OUT} ; $R_L=3k\Omega$
RS-232 RECEIVER (V.28)					
TTL Output Levels					
V _{OL}			0.4	Volts	
V _{OH}	2.4			Volts	
Input				, end	
HIGH Threshold		1.7	3.0	Volts	
LOW Threshold	0.8	1.2		Volts	
Receiver Open Circuit Bias			+2.0	Volts	
Input Impedance	3	5	7	kΩ	$V_{IN} = +15V \text{ to } -15V$
Max. Transmission Rate	120	230.4		kbps	IN
Propagation Delay					T _A @ 25°C & V _{CC} = +5V or
t _{PHL}	0.05	0.25	1	μS	Measured from 50% of V _{IN}
t _{PLH}	0.05	0.25	1	μS	to 1.5V of V _{OUT} .
RS-423 DRIVER (V.10)					
TTL Input Levels					
V _{IL}			0.8	Volts	
	2.0			Volts	
Output					
Ópen Circuit Voltage, V _O	±4.0		±6.0	Volts	R ₁ =3.9kΩ
HIGH Level Output, V _T	+3.6		+6.0	Volts	R _L =450Ω; V _{OUT} ≥ 0.9V _{OC}
LOW Level Output, V_T	-6.0		-3.6	Volts	R_{L}^{L} =450Ω; $V_{OUT} ≥ 0.9V_{OC}$ T_{A} =+25°C,, V_{CC} = +5.0V
	0.9V _{oc}			Volts	$T_{A}^{-} = +25^{\circ}C_{,,} V_{CC}^{-} = +5.0V$
Short Circuit Current	00		±150	mA	$V_{OUT} = 0V, V_{CC} = +5.0V$ $V_{CC} = 0V, V_{OUT} = \pm 0.25V$
Power Off Current			±100	μΑ	$V_{CC} = 0V, V_{OUT} = \pm 0.25V$
Transition Time			100	ns	Rise/fall time, between ±3
Max. Transmission Rate	120			kbps	R _L =450Ω
Propagation Delay					T_{A}^{L} @ 25°C & V _{CC} = +5V or
t _{PHL}	0.05	0.5	2	μS	Measured from 1.5V of V _{IN}
t _{PLH}	0.05	0.5	2	μs	to 50% of V _{OUT} ; R _L =450ຶ່ນ
RS-423 RECEIVER (V.10)					
TTL Output Levels					
V _{OL}			0.4	Volts	
V _{OH}	2.4			Volts	
Input					
HIGH Threshold	+0.3		+7.0	Volts	
LOW Threshold	-7.0		-0.3	Volts	
					Refer to Rec. input graph
HIGH Input Current					Refer to Rec. input graph
LOW Input Current					
LOW Input Current Receiver Sensitivity			±0.3	Volts	$V_{CM} = +7V \text{ to } -7V$
LOW Input Current	4 120		±0.3	Volts kΩ kbps	$V_{CM} = +7V \text{ to } -7V$ $V_{IN} = +10V \text{ to } -10V$

SPECIFICATIONS (Continued)


 $T_{A} = +25^{\circ}C$ and $V_{CC} = +5.0V$ unless otherwise noted.

	MIN.	TYP.	MAX.	UNITS	CONDITIONS
RS-423 RECEIVER (V.10)					
Propagation Delay					T _A @ 25°C & V _{CC} = +5V only
t _{PHL}	0.05	0.2	1	μS	Measured from 50% of V _{IN}
t _{PLH}	0.05	0.2	1	μS	to 1.5V of V _{OUT}
POWER REQUIREMENTS					
V _{cc}	4.75	5.00	5.25	Volts	
I _{CC} (no interface selected)		30		mA	V _{CC} =5.0V
(RS-232 Mode)		140		mA	f _{IN} = 120kbps. Drivers loaded.
(RS-422 Mode)		320		mA	f _{IN} = 2Mbps. Drivers loaded.
(RS-449 Mode)		320		mA	f _{IN} = 2Mbps. Drivers loaded.
(EIA-530 Mode)		320		mA	f _{IN} = 2Mbps. Drivers loaded.
(EIA-530A Mode)		320		mA	f _{IN} = 2Mbps. Drivers loaded.
(RS-485 Mode)		370		mA	$f_{IN} = 2Mbps.$ Drivers loaded.
(V.35 Mode)		210		mA	$f_{IN} = 2Mbps.$ Drivers loaded.
(V.36 Mode)		310		mA	$f_{IN} = 2Mbps.$ Drivers loaded.
ENVIRONMENTAL AND ME	CHANICA				
Operating Temperature Range		\ _	+70	°C	
Storage Temperature Range	-65		+150	J°	
Package		1 30-pin QFI		C	
i achaye	C) 			

RECEIVER INPUT GRAPHS

RS-485 RECEIVER

Rev: A Date:1/27/04

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc} +7V
Input Voltages:
Logic0.3V to (V _{cc} +0.5V)
Drivers0.3V to (V _{cc} +0.5V)
Receivers±15V
Output Voltages:
Logic0.3V to (V _{cc} +0.5V)
Drivers±14V
Receivers0.3V to (V _{cc} +0.5V)
Storage Temperature65°C to +150°C
Power Dissipation2000mW

Package Derating:

Ø _{.IA}	46°C/W
Ø_JC	16°C/W

STORAGE CONSIDERATIONS

Due to the relatively large package size of the 80-pin quad flat-pack, storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below 40°C and 60%RH. If the parts are removed from the bag, they should be used within 48 hours or stored in an environment at or below 20%RH. If the above conditions cannot be followed, the parts should be baked for four hours at 125°C in order remove moisture prior to soldering. Sipex ships the 80-pin QFP in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30%RH.

OTHER AC CHARACTERISTICS

 $T_A = +70^{\circ}$ C to 0°C and $V_{CC} = +4.75$ V to +5.25V unless otherwise noted

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
DRIVER DELAY TIME BETWEE	N ACTIV	E MODE A	ND TRI-S	TATE MODE	
RS-232 MODE					
t _{PZL} ; Tri-state to Output LOW		0.70	5.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PZH} ; Tri-state to Output HIGH		0.40	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PLZ} ; Output LOW to Tri-state		0.20	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PHZ} ; Output HIGH to Tri-state		0.40	2.0	μS	$C_L = 100 pF$, Fig. 4 ; S_2 closed
RS-423 MODE					
t _{PZL} ; Tri-state to Output LOW		0.15	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PZH} ; Tri-state to Output HIGH		0.20	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PLZ} ; Output LOW to Tri-state		0.20	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
t _{PHZ} ; Output HIGH to Tri-state		0.15	2.0	μs	$C_L = 100 pF$, Fig. 4 ; S_2 closed
RS-422, RS-485 MODES					
t _{PZL} ; Tri-state to Output LOW		2.80	10.0	μs	C _L = 100pF, Fig. 4 & 6; S ₁ closed
t _{PZH} ; Tri-state to Output HIGH		0.10	2.0	μs	C _L = 100pF, Fig. 4 & 6; S ₂ closed
t _{PLZ} ; Output LOW to Tri-state		0.10	2.0	μs	C _L = 15pF, Fig. 4 & 6; S ₁ closed
t _{PHZ} ; Output HIGH to Tri-state		0.10	2.0	μS	C _L = 15pF, Fig. 4 & 6; S ₂ closed
V.35 MODE					
t _{PZL} ; Tri-state to Output LOW		2.60	10.0	μs	C _L = 100pF, Fig. 4 & 6; S ₁ closed
t _{PZH} ; Tri-state to Output HIGH		0.10	2.0	μS	$C_L = 100 pF$, Fig. 4 & 6; S_2 closed

OTHER AC CHARACTERISTICS (Continued)

 $T_{a} = +70^{\circ}C$ to 0°C and $V_{cc} = +4.75V$ to +5.25V unless otherwise noted.

EN AC	0.10 0.15 TIVE MOD 0.12 0.10	2.0 2.0 E AND TR 2.0	μs μs I-STATE MOD	$C_L = 15pF$, Fig. 4 & 6; S ₁ closed $C_L = 15pF$, Fig. 4 & 6; S ₂ closed											
EN ACT	0.15 FIVE MOD 0.12	2.0 E AND TR	μs	closed $C_L = 15pF$, Fig. 4 & 6; S_2 closed											
EN ACT	TIVE MOD 0.12	E AND TR	·	closed											
EN AC	0.12		I-STATE MOD	E											
	_	2.0		RECEIVER DELAY TIME BETWEEN ACTIVE MODE AND TRI-STATE MODE											
	_	2.0													
	0.10		μs	C _L = 100pF, Fig. 2 ; S ₁ closed											
		2.0	μS	$C_L = 100 pF$, Fig. 2 ; S_2 closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 ; S ₁ closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 ; S ₂ closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 ; S ₁ closed											
	0.10	2.0	μS	$C_L = 100 pF$, Fig. 2 ; S_2 closed											
	0.10	2.0	μS	C _L = 100pF, Fig. 2 ; S ₁ closed											
	0.10	2.0	μs	$C_L = 100 pF$, Fig. 2 ; S_2 closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 & 8 ; S ₁ closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 & 8 ; S ₂ closed											
	0.10	2.0	μs	C _L = 15pF, Fig. 2 & 8 ; S ₁ closed											
	0.10	2.0	μS	C _L = 15pF, Fig. 2 & 8; S ₂ closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 & 8; S ₁ closed											
	0.10	2.0	μs	C _L = 100pF, Fig. 2 & 8; S ₂ closed											
	0.10	2.0	μs	C _L = 15pF, Fig. 2 & 8; S ₁ closed											
	0.10	2.0	μs	C _L = 15pF, Fig. 2 & 8; S ₂ closed											
ER SKE	 W [(t	- t _{nib}),	- (t _{nbl} - t _{nik}) _t												
	20	50	ns	$V_{CC} = +5.0V, T_{A} @ +25^{\circ}C$											
	20		ns												
	20	50	ns	V _{cc} = +5.0V, T _A @ +25°C											
	20		ns												
	20	50	ns	V _{cc} = +5.0V, T _A @ +25°C											
	20		ns												
	20	50	ns	V _{cc} = +5.0V, T _A @ +25°C											
	20		ns	55 A											
	ER SKE	 0.10 <li< td=""><td>$\begin{array}{c c c c c c c c } 0.10 & 2.0 \\ 0.10 & 0.0 \\ 0.10 & 0.$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></li<>	$\begin{array}{c c c c c c c c } 0.10 & 2.0 \\ 0.10 & 0.0 \\ 0.10 & 0.$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											

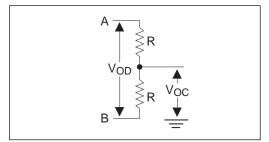


Figure 1. Driver DC Test Load Circuit

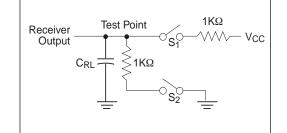


Figure 2. Receiver Timing Test Load Circuit

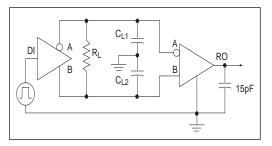


Figure 3a. Driver/Receiver Timing Test Circuit

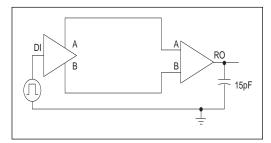


Figure 3b. Timing Test Ckt. (V.35 mode only for SP504)

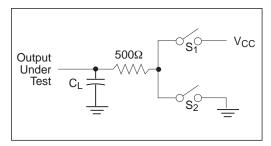


Figure 4. Driver Timing Test Load #2 Circuit

Note : Figures 3a and 3b shown above are used for evaluating maximum transmission rate. For 10Mbps transmission rate, an input signal of 5MHz is applied to the driver input. In order for a valid transmission rate, the driver output must adhere to the output electrical specifications (V_{cu} , & V_{cu}) and an acceptable duty cycle for the protocol tested. The receiver outputs are checked for proper TTL/CMOS V_{oH} & V_{oL} levels and an acceptable output duty cycle.

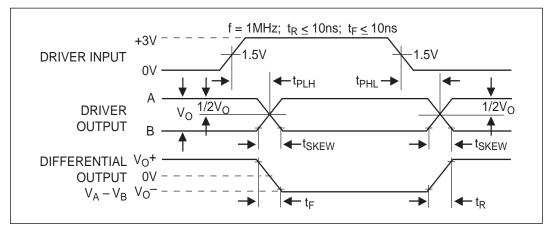


Figure 5. Driver Propagation Delays

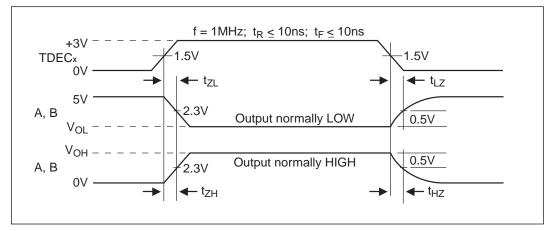


Figure 6. Driver Enable and Disable Times

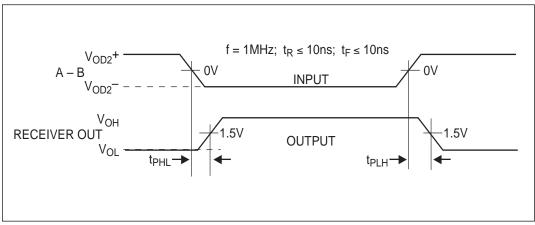


Figure 7. Receiver Propagation Delays

Note : Figures 5 and 7 shown above are corrected from the original SP504 datahseet. Both figures were incorrect on the original datasheet where the driver output from Figure 5 and the receiver output from Figure 7 are inverted signals.

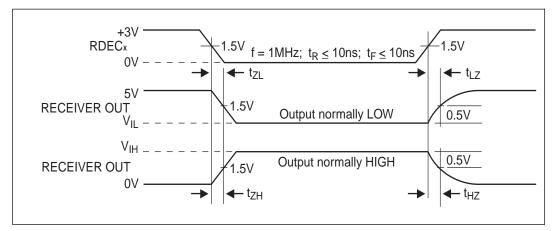


Figure 8. Receiver Enable and Disable Times

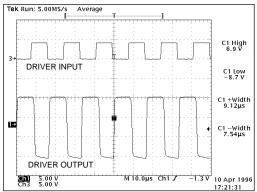


Figure 9. Typical RS-232 Driver Output Waveform

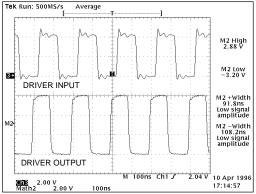


Figure 11. Typical RS-422/485 Driver Output Waveform

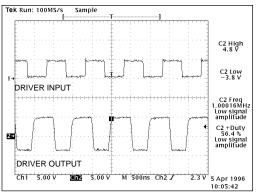
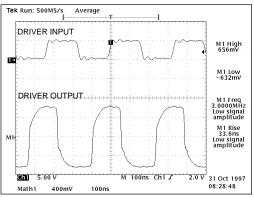
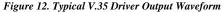
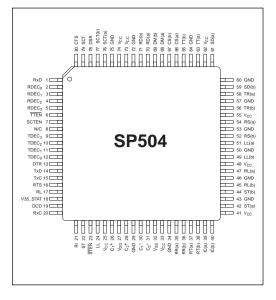





Figure 10. Typical RS-423 Driver Output Waveform

PIN ASSIGNMENTS... CLOCK AND DATA GROUP

Pin 1 — RxD — Receive Data; TTL output, sourced from RD(a) and RD(b) inputs.

Pin 14 — TxD — TTL input ; transmit data source for SD(a) and SD(b) outputs.

Pin 15—TxC—Transmit Clock; TTL input for TT driver outputs.

Pin 20 — RxC — Receive Clock; TTL output sourced from RT(a) and RT(b) inputs.

Pin 22—ST—Send Timing; TTL input; source for ST(a) and ST(b) outputs.

Pin 37 — RT(a) — Receive Timing; analog input, inverted; source for RxC.

Pin 38 — RT(b) — Receive Timing; analog input, non-inverted; source for RxC.

Pin 42 — ST(a) — Send Timing; analog output, inverted; sourced from ST.

Pin 44—ST(b)—Send Timing; analog output, non-inverted; sourced from ST.

Pin 59 — SD(b) — Analog Out — Send data, non-inverted; sourced from TxD.

Pin 61 — SD(a) — Analog Out — Send data, inverted; sourced from TxD.

Pin 63 — TT(a) — Analog Out — Terminal Timing, inverted; sourced from TxC

Pin 65 — TT(b) — Analog Out — Terminal Timing, non–inverted; sourced from TxC.

Pin 70 — RD(a) — Receive Data, analog input; inverted; source for RxD.

Pin 71 — RD(b) — Receive Data; analog input; non-inverted; source for RxD.

Pin 76 — SCT(a) — Serial Clock Transmit; analog input, inverted; source for SCT.

Pin 77 — SCT(b) — Serial Clock Transmit: analog input, non–inverted; source for SCT

Pin 79 — SCT — Serial Clock Transmit; TTL output; sources from SCT(a) and SCT(b) inputs.

CONTROL LINE GROUP

Pin 13 — DTR — Data Terminal Ready; TTL input; source for TR(a) and TR(b) outputs.

Pin 16 — RTS — Ready To Send; TTL input; source for RS(a) and RS(b) outputs.

Pin 17 — RL — Remote Loopback; TTL input; source for RL(a) and RL(b) outputs.

Pin 18 — V35_STAT — V.35 Status; TTL output; outputs logic high when in V.35 mode.

Pin 19 — DCD— Data Carrier Detect; TTL output; sourced from RR(a) and RR(b) inputs.

Pin 21 — RI — Ring Indicate; TTL output; sourced from IC(a) and IC(b) inputs.

Pin 24 — LL — Local Loopback; TTL input; source for LL(a) and LL(b) outputs.

Pin 35 — RR(a)— Receiver Ready; analog input, inverted; source for DCD.

Pin 36 — RR(b)— Receiver Ready; analog input, non-inverted; source for DCD.

Pin 39 — IC(a)— Incoming Call; analog input, inverted; source for RI.

Pin 40 — IC(b)— Incoming Call; analog input,non-inverted; source for RI.

Pin 45 — RL(b) — Remote Loopback; analog output, non-inverted; sourced from RL.

Pin 47 — RL(a) — Remote Loopback; analog output inverted; sourced from RL.

Pin 49— LL(b) — Local Loopback; analog output, non-inverted; sourced from LL.

Pin 51 — LL(a) — Local Loopback; analog output, inverted; sourced from LL.

Pin 52 — RS(b) — Ready To Send; analog output, non-inverted; sourced from RTS.

Pin 54 — RS(a) — Ready To Send; analog output, inverted; sourced from RTS.

Pin 56 — TR(b) — Terminal Ready; analog output, non-inverted; sourced from DTR.

Pin 58 — TR(a) — Terminal Ready; analog output, inverted; sourced from DTR.

Pin 66 — CS(a) — Clear To Send; analog input, inverted; source for CTS.

Pin 67 — CS(b)— Clear To Send; analog input, non-inverted; source for CTS.

Pin 68 — DM(a)— Data Mode; analog input, inverted; source for DSR.

Pin 69 — DM(b)— Data Mode; analog input, non-inverted; source for DSR

Pin 78 — DSR— Data Set Ready; TTL output; sourced from DM(a), DM(b) inputs.

Pin 80 — CTS— Clear To Send; TTL output; sourced from CS(a) and CS(b) inputs.

CONTROL REGISTERS

Pins $2-5 - RDEC_0 - RDEC_3 - Receiver decode register; configures receiver modes; TTL inputs.$

Pin 6 — $\overline{\text{TTEN}}$ — Enables TT driver, active low; TTL input.

Pin 7 — SCTEN — Enables SCT receiver; active high; TTL input.

Pins 12-9 — TDEC₀ – TDEC₃ — Transmitter decode register; configures transmitter modes; TTL inputs.

Pin 23 — <u>STEN</u> — Enables ST driver; active low; TTL input.

POWER SUPPLIES

Pins 25, 33, 41, 48, 55, 62, 73, 74 — V_{CC} — +5V input.

Pins 29, 34, 43, 46, 50, 53, 57, 60, 64, 72, 75 — GND — Ground.

Pin 27 — V_{DD} +10V Charge Pump Capacitor — Connects from V_{DD} to V_{CC} . Suggested capacitor size is 22 μ F, 16V.

Pin 32 — V_{SS} –10V Charge Pump Capacitor — Connects from ground to V_{SS} . Suggested capacitor size is 22µF, 16V.

Pins 26 and 30 — C_1^+ and C_1^- — Charge Pump Capacitor — Connects from C_1^+ to C_1^- . Suggested capacitor size is 22µF, 16V.

Pins 28 and 31 — C_2^+ and C_2^- — Charge Pump Capacitor — Connects from C_2^+ to C_2^- . Suggested capacitor size is 22µF, 16V.

NOTE: NC pins should be left floating; internal signals may be present.

FEATURES...

The **SP504** is a highly integrated serial transceiver that allows software control of its interface modes. Similar to the SP503, the **SP504** offers the same hardware interface modes for RS-232 (V.28), RS-422A (V.11), RS-449, RS-485, V.35, EIA-530 and includes V.36 and EIA-530A. The interface mode selection is done via an 8-bit switch; four (4) bits control the drivers and four (4) bits control the receivers. The **SP504** is fabricated using low power BiCMOS process technology, and incorporates a **Sipex** patented (5,306,954) charge pump allowing +5V only operation. Each device is packaged in an 80-pin JEDEC Quad FlatPack package.

The **SP504** is ideally suited for wide area network connectivity based on the interface modes offered and the driver and receiver configurations. The **SP504** has seven (7) independent drivers and seven (7) independent receivers. In V.35 mode, the **SP504** includes the necessary components and termination resistors internal within the device for compliant V.35 operation.

THEORY OF OPERATION

The **SP504** is made up of five separate circuit blocks — the charge pump, drivers, receivers, decoder and switching array. Each of these circuit blocks is described in more detail below.

Charge–Pump

The **SP504**'s charge pump design is based on the SP503 where **Sipex**'s patented charge pump design (5,306,954) uses a four–phase voltage shifting technique to attain symmetrical ±10V power supplies. In addition, the **SP504** charge pump incorporates a "programmable" feature that produces an output of ±10V or ±5V for V_{SS} and V_{DD} depending on the mode of operation. The charge pump still requires external capacitors to store the charge. *Figure 17a* shows the waveform found on the positive side of capacitor C2, and *Figure 17b* shows the negative side of capcitor that controls the four phases of the voltage shifting. A description of each phase follows.

The **SP504** charge pump is used for RS-232 where the output voltage swing is typically $\pm 10V$ and also used for RS-423. However, RS-

423 requires the voltage swing on the driver output be between $\pm 4V$ to $\pm 6V$ during an open circuit (no load). The charge pump would need to be regulated down from $\pm 10V$ to $\pm 5V$. A typical $\pm 10V$ charge pump would require external clamping such as 5V zener diodes on V_{DD} and V_{SS} to ground. The $\pm 5V$ output has symmetrical levels as in the $\pm 10V$ output. The $\pm 5V$ is used in the following modes where RS-423 levels are used: RS-449, EIA-530, EIA-530A and V.36.

Phase 1 (±10V)

— V_{SS} charge storage — During this phase of the clock cycle, the positive side of capacitors C_1 and C_2 are initially charged to +5V. The C_1^+ is then switched to ground and the charge on $C_1^$ is transferred to C_2^- . Since C_2^+ is connected to +5V, the voltage potential across capacitor C_2 is now 10V.

Phase 1 (±5V)

— V_{SS} & V_{DD} charge storage and transfer — With the C_1 and C_2 capacitors initially charged to +5V, C_1^+ is then switched to ground and the charge on C_1^- is transferred to the V_{SS} storage capacitor. Simultaneously the C_2^- is switched to ground and the 5V charge on C_2^+ is transferred to the V_{DD} storage capacitor.

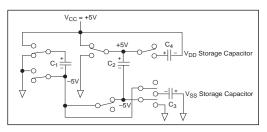


Figure 13a. Charge Pump Phase 1 for ±10V.

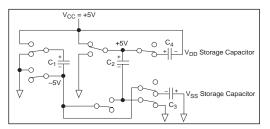


Figure 13b. Charge Pump Phase 1 for ±5V.

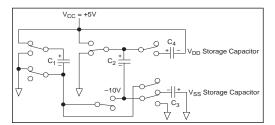


Figure 14a. Charge Pump Phase 2 for ±10V.

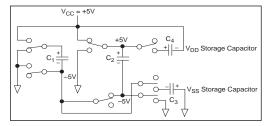


Figure 15. Charge Pump Phase 3.

Phase 2 (±10V)

— V_{SS} transfer — Phase two of the clock connects the negative terminal of C_2 to the V_{SS} storage capacitor and the positive terminal of C_2 to ground, and transfers the generated –10V or the generated –5V to C_3 . Simultaneously, the positive side of capacitor C₁ is switched to +5V and the negative side is connected to ground.

Phase 2 (±5V)

 $-V_{SS}$ & V_{DD} charge storage $-C_1^+$ is reconnected to V_{CC} to recharge the C_1 capacitor. C_2^+ is switched to ground and C_2^- is connected to C_3 . The 5V charge from Phase 1 is now transferred

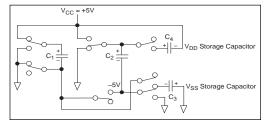


Figure 14b. Charge Pump Phase 2 for ±5V.

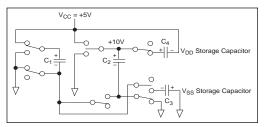


Figure 16. Charge Pump Phase 4.

to the V_{SS} storage capacitor. V_{SS} receives a continuous charge from either C_1 or C_2 . With the C1 capacitor charged to 5V, the cycle begins again.

Phase 3

— V_{DD} charge storage — The third phase of the clock is identical to the first phase — the charge transferred in C₁ produces –5V in the negative terminal of C₁, which is applied to the negative side of capacitor C₂. Since C₂⁺ is at +5V, the voltage potential across C₂ is 10V. For the 5V output, C₂⁺ is connected to ground so that the potential on C₂ is only +5V.

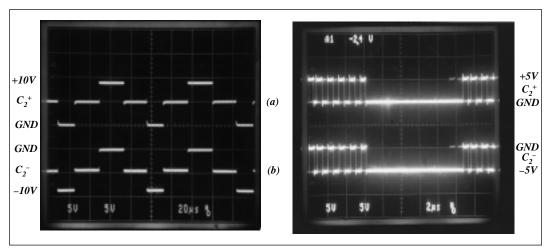


Figure 17. Charge Pump Waveforms

Since both V_{DD} and V_{SS} are separately generated from V_{CC} in a no-load condition, V_{DD} and V_{SS} will be symmetrical. Older charge pump approaches that generate V^- from V^+ will show a decrease in the magnitude of V^- compared to V^+ due to the inherent inefficiencies in the design.

The clock rate for the charge pump typically operates at 15kHz. The external capacitors must be a minimum of 22μ F with a 16V breakdown rating.

External Power Supplies

For applications that do not require +5V only, external supplies can be applied at the V+ and V⁻ pins. The value of the external supply voltages must be no greater than ± 10.5 V. The tolerance should be $\pm 5\%$ from ± 10 V. The current drain for the supplies is used for RS-232 and RS-423 drivers. For the RS-232 driver, the current requirement will be 3.5mA per driver. The RS-423 driver worst case current drain will be 11mA per driver. Power sequencing is required for the **SP504**. The supplies must be sequenced accordingly: ± 10 V, ± 5 V and ± 10 V. An external circuit would be needed for proper power supply sequencing. Consult factory for application circuitry.

Drivers

The **SP504** has seven (7) enhanced independent drivers. Control for the mode selection is done via a four-bit control word. The drivers are prearranged such that for each mode of operation, the relative position and functionality of the drivers are set up to accommodate the selected interface mode. As the mode of the drivers is changed, the electrical characteristics will change to support the requirements of clock, data, and control line signal levels. *Table 1* shows the mode of each driver in the different interface modes that can be selected.

There are four basic types of driver circuits — RS-232, RS-423, RS-485 and V.35.

The RS-232 drivers output single–ended signals with a minimum of $\pm 5V$ (with $3k\Omega$ and 2500pF loading), and can operate up to 120kbps.

The RS-232 drivers are used in RS-232 mode for all signals, and also in V.35 mode where they are used as the control line signals such as DTR and RTS.

The RS-423 drivers are also single–ended signals with a minimum voltage output of $\pm 3.6V$ (with 450 Ω loading) and can operate up to 120kbps. Open circuit V_{OL} and V_{OH} measurements are $\pm 4.0V$ to $\pm 6.0V$. The RS-423 drivers are used in RS-449, EIA-530, EIA-530A and V.36 modes as Category II signals from each of their corresponding specifications.

The third type of driver produces a differential signal that can maintain RS-485, ± 1.5 V differential output levels with a worst case load of 54 Ω . The signal levels and drive capability of the RS-485 drivers allow the drivers to also support RS-422 (V.11) requirements of ± 2 V differential output levels with 100 Ω loads. The RS-422 drivers are used in RS-449, EIA-530, EIA-530A and V.36 modes as Category I signals which are used for clock and data.

The fourth type of driver is the V.35 driver. V.35 levels require ±0.55V driver output signals with a load of 100Ω . The **SP504** drivers simplify existing V.35 implementations that use external termination schemes. The drivers were specifically designed to comply with the requirements of V.35 as well as the driver output impedance values of V.35. The drivers achieve the 50 Ω to 150 Ω source impedance. However, an external 150 Ω resistor to ground must be connected to the non-inverting outputs; SD(b), ST(b), and TT(b), in order to comply with the 135Ω to 165Ω short-circuit impedance for V.35. The V.35 driver itself is disabled and transparent when the decoder is in all other modes. All of the differential drivers; RS-485, RS-422, and V.35, can operate up to 10Mbps.

The driver inputs are both TTL or CMOS compatible. Since there are no pull-up or pull-down resistors on the driver inputs, they should be tied to a known logic state in order to define the driver output.

Receivers

The **SP504** has seven (7) independent receivers which can be programmed for the different interface modes. Control for the mode selection is done via a 4-bit control word that is independent from the driver control word. The coding for the drivers and receivers is identical. Therefore, if the modes for the drivers and receivers are supposed to be identical in the application, the control lines can be tied together.

Like the drivers, the receivers are pre-arranged for the specific requirements of the interface. As the operating mode of the receivers is changed, the electrical characteristics will change to support the requirements of clock, data, and control line receivers. *Table 2* shows the mode of each receiver in the different interface modes that can be selected.

There are three basic types of receiver circuits — RS-232, RS-423, and RS-485.

The RS-232 receiver is a single–ended input with a threshold of 0.8V to 2.4V. The RS-232 receiver has an operating voltage range of $\pm 15V$ and can receive signals up to 120kbps. The input sensitivity complies with EIA-RS-232 and V.28 at +3V to -3V. The input impedance is 3k Ω to 7k Ω . RS-232 receivers are used in RS-232 mode for all data, clock and control signals. They are also used in V.35 mode for control line signals such as CTS and DSR.

The RS-423 receivers are also single–ended but have an input threshold as low as ± 200 mV. The input impedance is guaranteed to be greater than 4k Ω , with an operating voltage range of ± 7 V. The RS-423 receivers can operate up to 120kbps. RS-423 receivers are used in RS-449, EIA-530, EIA-530A and V.36 modes as Category II signals as indicated by their corresponding specifications.

The third type of receiver is a differential which supports RS-485. The RS-485 receiver has an input impedance of $15k\Omega$ and a differential threshold of ± 200 mV. Since the characteristics of an RS-422 (V.11) receiver are actually subsets of RS-485, the receivers for RS-422 requirements are covered by the RS-485 receivers. RS-422 receivers are used in RS-449, EIA-530, EIA-530A and V.36 as Category I signals for receiving clock, data, and some control line signals. The differential receivers can receive data up to 10Mbps.

The RS-485 receivers are also used for the V.35 mode. Unlike the older implementations of differential or V.35 receivers, the **SP504** contains an internal resistor termination network that ensures a V.35 input impedance of 100Ω (±10 Ω) and a short-circuit impedance of 150Ω (±15 Ω). The traditional V.35 implementations required external termination resistors to acheive the proper V.35 impedances. The internal network is connected via low on-resistance FET switches when the decoder is changed to V.35 mode. The termination network is transparent when all other modes are selected. The V.35 receivers can operate up to 10Mbps.

All receivers include a fail-safe feature that outputs a logic HIGH when the receiver inputs are open. For single-ended RS-232 receivers, there are internal $5k\Omega$ pull-down resistors on the inputs which produces a logic HIGH ("1") at the receiver outputs. The single-ended RS-423 receivers produce a logic LOW ("0") on the output when the inputs are open. This is due to a pullup device connected to the input. The differential receivers have the same internal pull-up device on the non-inverting input which produces a logic HIGH ("1") at the receiver output. The three differential receivers when configured in V.35 mode (RxD, RxC & SCT) do not have fail-safe because the internal termination resistor network is connected

Decoder

The **SP504** has the ability to change the interface mode of the drivers or receivers via an 8–bit switch. The decoder for the drivers and receivers is not latched; it is merely a combinational logic switch.

The control word can be externally latched either HIGH or LOW to write the appropriate code into the **SP504**. The codes shown in *Tables 1 and 2* are the only specified, valid modes for the **SP504**. Undefined codes may represent other interface modes not specified (consult the factory for more information). The drivers are controlled with the data bits labeled $TDEC_{3}$ – $TDEC_{0}$. All of the drivers can be put into tristate mode by writing 0000 to the driver decode switch. The three drivers TxD, ST and TxC, have a 150 Ω pull-down resistor to ground connected at the (b) output. This resistor is part of the V.35 driver circuitry and should be connected when in V.35 mode. Tri-state is possible for all drivers in RS-232 mode. The receivers are controlled with data bits RDEC₃–RDEC₀; the code 0000 written to the receivers will place the outputs into tri-state mode. The 0000 decoder word will override the enable control line for the one receiver (SCT).

Using the V.35_STAT Pin

The SP504 includes a V.35 status pin where the V35_STAT pin (pin 18) is a logic HIGH ("1") when the decoder is set to V.35 mode. The pin is a logic LOW ("0") when in all other modes including tri-state (decoder set at "0000"). Pin 18 allows the user to easily add FET switches or solid state relays to connect the external 150Ω resistor for V.35 operation. V35_STAT can be connected to the gate of the FET switches or the control of the relays so that the 150Ω resistors are connected to the non-inverting output of the three V.35 drivers. The output current of the V35_STAT pin is that of a typical TTL load of –3.2mA. The electrical specifications are similar to the SP504 receiver outputs. This feature would reduce additional logic required by older traditional methods.

NET1/NET2 Testing and Compliancy

Many system designers are required to certify their system for use in the European public network. Electrical testing is performed in adherence to the NET (Norme Européenne de Télécommunication) which specifies the ITU Series V specifications. The **SP504** adheres to all the required physical layer testing for NET1 and NET2. Consult factory for details.

RS422 RS485 RS449 EIA530 EIA-530A Pin Label RS232 V.35 Mode[.] V.36 TDEC,-TDEC 0000 0010 1110 0100 0101 1100 1101 1111 0110 SD(a) tri-state V.28 V.35-V.11– RS485-V.11-V.11-V.11-V.11-SD(b) tri-state V.35+ V.11+ RS485+ V.11+ V.11+ tri-state V.11+ V.11+ TR(a) tri-state V.28 V.11-RS485-V.11-V.11-V.10 V.28 V.10 TR(b) tri-state tri-state tri-state V.11+ RS485+ V.11+ V.11+ tri-state tri-state RS(a) tri-state V.28 V.11-RS485-V.11-V.11-V.11-V 28 V.10 RS(b) tri-state tri-state tri-state V.11+ RS485+ V.11+ V.11+ V.11+ tri-state RL(a) tri-state V.11-V.28 V.28 RS485-V.10 V.10 V.11-V.10 RL(b) tri-state tri-state V.11+ RS485+ tri-state tri-state V.11+ tri-state tri-state LL(a) tri-state V.10 V.28 V.28 V.11-RS485-V.10 V.10 V.10 tri-state LL(b) tri-state V.11+ RS485+ tri-state tri-state tri-state tri-state tri-state ST(a) tri-state V.28 V.35-V.11-RS485-V.11-V.11-V.11-V.11-ST(b) V.11+ V.11+ V.11+ tri-state tri-state V.35+ RS485+ V.11+ V.11+

SP504 Driver Mode Selection

Table 1. Driver Mode Selection

tri-state

tri-state

V.28

tri-state

TT(a)

TT(b)

SP504 Receiver Mode Selection

RS485-

RS485+

V.11-

V.11+

V.11-

V.11+

V.11-

V.11+

V.11-

V.11+

V.11-

V.11+

V.35-

V.35+

Pin Label	Mode:	RS232	V.35	R\$422	RS485	RS449	EIA530	EIA-530A	V.36
RDEC ₃ -RDEC ₀	0000	0010	1110	0100	0101	1100	1101	1111	0110
RD(a)	>12kΩ to GND	V.28	V.35-	V.11-	RS485-	V.11-	V.11-	V.11-	V.11-
RD(b)	>12k Ω to GND	>12k Ω to GND	V.35+	V.11+	RS485+	V.11+	V.11+	V.11+	V.11+
RT(a)	>12k Ω to GND	V.28	V.35–	V.11-	RS485-	V.11-	V.11-	V.11-	V.11-
RT(b)	>12k Ω to GND	>12k Ω to GND	V.35+	V.11+	RS485+	V.11+	V.11+	V.11+	V.11+
CS(a)	>12k Ω to GND	V.28	V.28	V.11-	RS485-	V.11-	V.11-	V.11-	V.10
CS(b)	>12k Ω to GND	>12k Ω to GND	>12k Ω to GND	V.11+	RS485+	V.11+	V.11+	V.11+	>12k Ω to GND
DM(a)	>12k Ω to GND	V.28	V.28	V.11-	RS485-	V.11-	V.11-	V.10	V.10
DM(b)	>12k Ω to GND	>12k Ω to GND	>12k Ω to GND	V.11+	RS485+	V.11+	V.11+	>12k Ω to GND	>12k Ω to GND
RR(a)	>12k Ω to GND	V.28	V.28	V.11-	RS485-	V.11-	V.11-	V.11–	V.10
RR(b)	>12k Ω to GND	>12k Ω to GND	>12k Ω to GND	V.11+	RS485+	V.11+	V.11+	V.11+	>12k Ω to GND
IC(a)	>12k Ω to GND	V.28	V.28	V.11-	RS485-	V.10	V.10	V.10	V.10
IC(b)	>12k Ω to GND	>12k Ω to GND	>12k Ω to GND	V.11+	RS485+	>12kΩ to GND	>12k Ω to GND	>12kΩ to GND	>12kΩ to GND
SCT(a)	>12k Ω to GND	V.28	V.35-	V.11-	RS485-	V.11-	V.11-	V.11-	V.11-
SCT(b)	>12k Ω to GND	>12k Ω to GND	V.35+	V.11+	RS485+	V.11+	V.11+	V.11+	V.11+

Table 2. Receiver Mode Selection

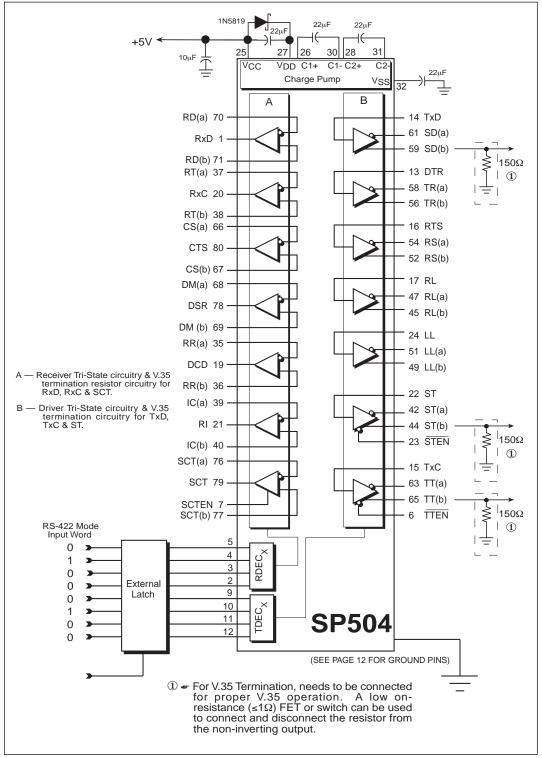


Figure 18. Typical Operation Circuit

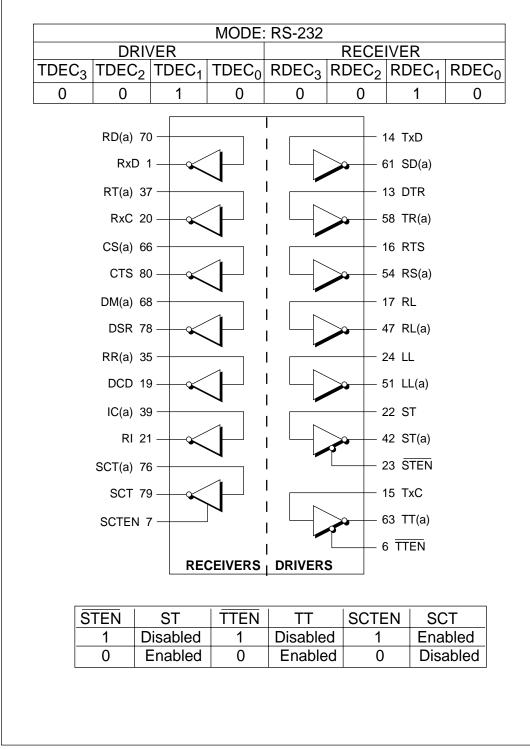


Figure 19. Mode Diagram — RS-232

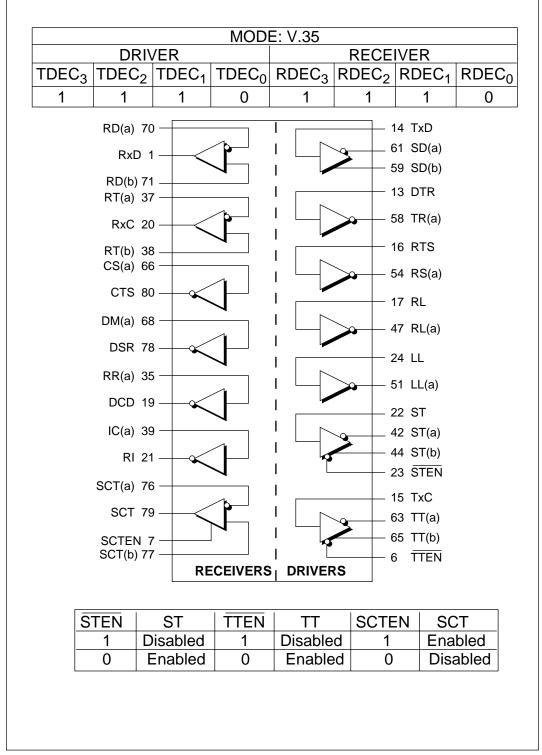


Figure 20. Mode Diagram – V.35

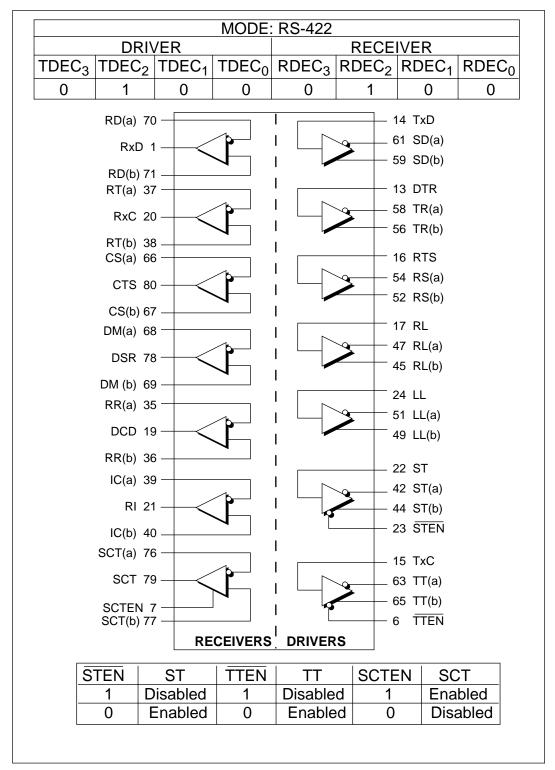


Figure 21. Mode Diagram — RS-422

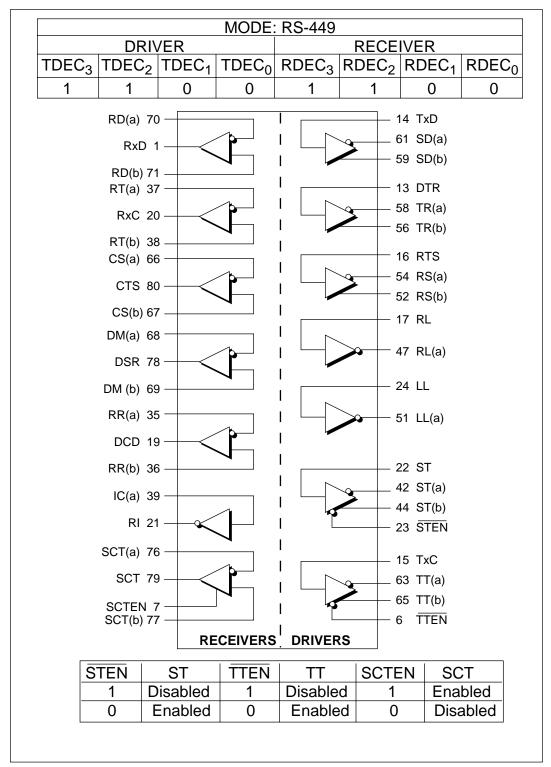


Figure 22. Mode Diagram — RS-449

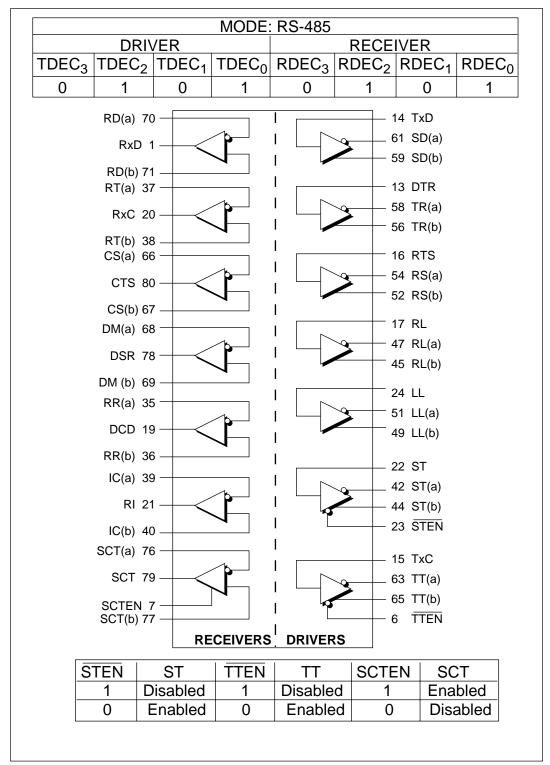


Figure 23. Mode Diagram — RS-485

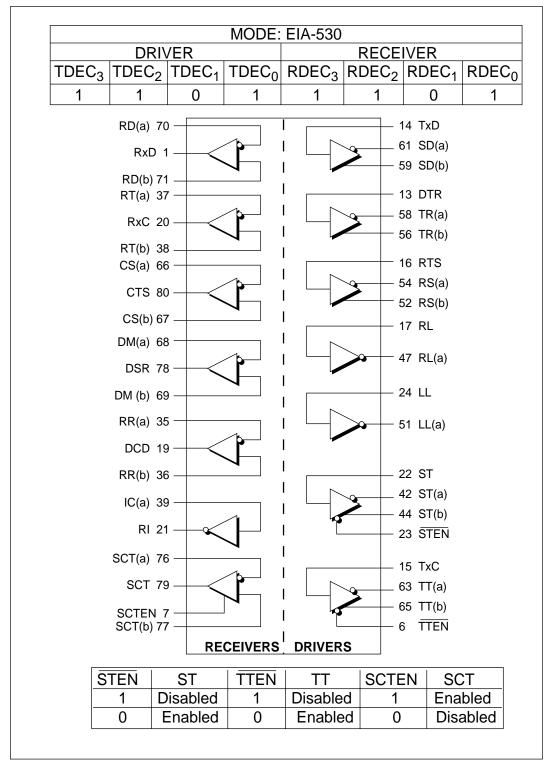


Figure 24. Mode Diagram — EIA-530

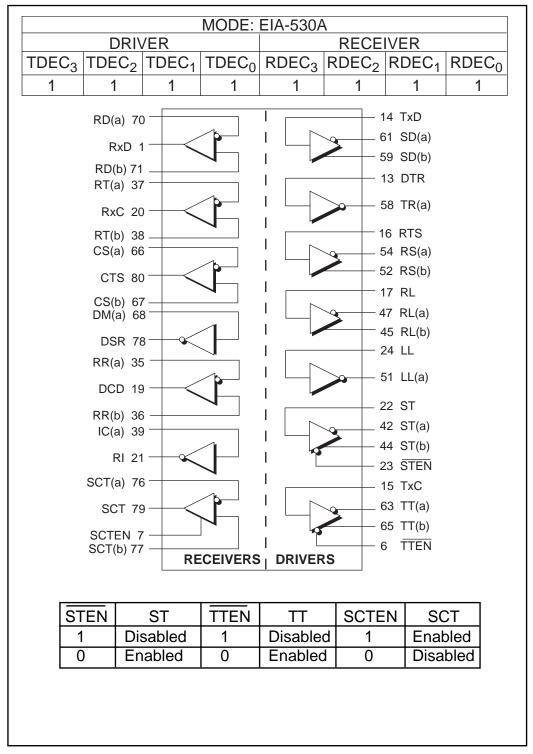


Figure 25. Mode Diagram — EIA-530A

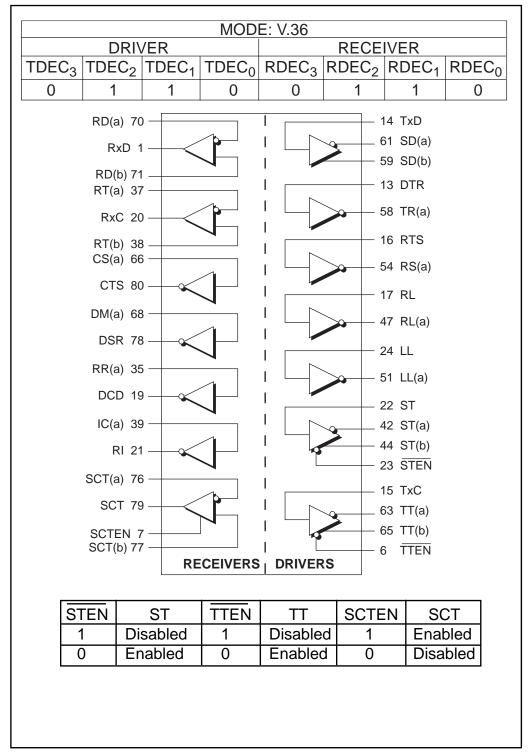


Figure 26. Mode Diagram – V.36

ADDITIONAL TRANSCEIVERS WITH THE SP504

Serial ports usually can have two data signals (SD, RD), three clock signals (TT, ST, RT), and at least eight control signals (CS, RS, etc.). EIA-RS-449 contains twenty six signal types for a DB-37 connector. A DB-37 serial port design may require thirteen drivers and fourteen receivers¹. Although many applications do not use all these signals, some applications may need to support extra functions such as diagnostics. The **SP504** supports enough transceivers for the primary channels of data, clock and control signals. Configuring LL, RL and TM would require two additional drivers and one receivers for a DTE (one driver and two receivers for a DCE).

A programmable transceiver such as the SP332 is a convenient solution in a design that requires extra single ended or differential drivers/receivers. As shown in *Figure 28*, the SP332 can be configured to four different variations.

The SP332 in *Figure 29* is configured for two single-ended drivers and one differential receiver. For a DTE design, the two drivers are used for LL and RL signals and the receiver is used for the TM signal. This configuration was selected because the two RS-232 drivers can be

used for RS-423 by connecting a zener clamping diode to ground on the two driver outputs. The diodes will limit the voltage swing on the outputs so that the $V_{OC} = \pm 4V$ to $\pm 6V$ adheres to the RS-423 specification. The differential receiver can be easily configured to RS-423 by grounding the non-inverting input. The receiver will adhere to the RS-423 specifications.

SIGNAL GROUND TO DCE SECONDARY RS SECONDARY RS SECONDARY RS SECONDARY RS SECONDARY RS SELECT STANDBY TO DCE SELECT STANDBY TO DCE SELECT STANDBY TO DCE CONTROL	CIRCUIT	CIRCUIT NAME	CIRCUIT	CIRCUIT		
CONTROL SEND COMMON RECEIVE COMMON TO DCE RECEIVE COMMON FROM DCE TERMINAL IN SERVICE TERMINAL IN SERVICE TERMINAL READY DATA MODE SEND DATA SEND DATA TERMINAL READY TO DCE TERMINAL READY TO DCE TERMINAL TIMING RECEIVE DATA TO DCE RECEIVE DATA TERMINAL TIMING RECEIVE DATA TERMINAL TIMING RECEIVE READY RECEIVE READY RECEIVE READY SEND TIMING RECEIVE READY SELECT FREQUENCY TO DCE SIGNAL QUALITY SIGNAL QUALITY SED SECONDARY RE SECONDARY RE SECONDARY SECONDARY RE SECON	MNEMONIC		DIRECTION	TYPE		
CONTROL SEND COMMON RECEIVE COMMON TO DCE RECEIVE COMMON TO DCE TERMINAL IN SERVICE TERMINAL IN SERVICE TERMINAL READY DATA MODE SEND DATA DATA MODE RECEIVE DATA TEMINAL TIMINS SEND TIMINS RECEIVE DATA TERMINAL TIMINS RECEIVE DATA TERMINAL TIMINS RECEIVE TAMINS RECEIVE TO SEND CLEAR TO SEND CLEAR TO SEND SELECT FREQUENCY SELECT FREQUENCY SELECT FREQUENCY SELECT FREQUENCY SELECT FREQUENCY SECONDARY RE SECONDARY RE SECONDARY SECONDARY RE SECOND	SG	STGNAL GROUND				
2 RECEIVE COMMON FROM DCE TERMINAL IN SERVICE TO DCE FROM DCE TERMINAL INSERVICE TO DCE FROM DCE TERMINAL READY TO DCE CONTROL DATA MODE FROM DCE DATA DATA MODE FROM DCE DATA P SEND DATA TO DCE DATA P RECEIVE DATA FROM DCE DATA P REQUEST TO SEND TO DCE TIMING S REQUEST TO SEND TO DCE CONTROL S REQUEST TO SEND TO DCE CONTROL S REQUEST TO SEND TO DCE CONTROL S SELECT FREQUENCY TO DCE CONTROL S SELECT FREQUENCY TO DCE DATA S SECONDARY SEN TO DCE DATA S SECONDARY SEN TO DCE DATA S SECONDARY SEN TO DCE SECONDARY SEN TO DCE S SECONDARY SEN TO DCE DATA S SECONDARY SEN TO DCE DATA S SECONDARY RN FROM DCE CONTROL S SECONDARY RN FROM DCE CONTROL S SECONDARY RE FROM DCE	SC		TO DOE	COMMON		
TERMINAL IN SERVICE TO DCE INCOMING CALL FROM DCE TERMINAL READY TO DCE DATA MODE SEND DATA SEND DATA SEND DATA TO DCE TERMINAL TIMING TO DCE SEND DATA TO DCE SEND DATA TO DCE TREMINAL TIMING TO DCE SEND TATA TO DCE SEND TATA FROM DCE TIMING TERMINAL TIMING TO DCE SEND TATA FROM DCE TIMING TO DCE TIMING TO DCE SEND TATA FROM DCE CONTROL TO DCE SEND TATA TO DCE SEND TATA TO DCE SEND TATA TO DCE SEND TATA TO DCE SEND TATA TO DCE SEND TATA FROM DCE SEND TATA FROM DCE SEND TATA FROM DCE SELECT FREQUENCY TO DCE SIGNAL RATE SELECTOR SECONDARY SEND DATA TO DCE SECONDARY RD FROM DCE SECONDARY RD FROM DCE CONTROL SECONDARY RD FROM DCE CONTROL SELECT FREQUENCY TO DCE SECONDARY RD FROM DCE CONTROL SECONDARY RD FROM DCE CONTROL SELECT STANDBY TO DCE CONTROL CONTROL SELECT STANDBY TO DCE CONTROL	RC			COMMON		
INCOMING CALL TERMINAL READY DATA MODE SEND DATA FROM DCE TO DCE FROM DCE CONTROL DATA MODE SEND DATA TO DCE FROM DCE DATA D SEND DATA TO DCE FROM DCE DATA TERMINAL THING SEND TIMING TO DCE TO DCE DATA CENTROL RECEIVE DATA FROM DCE FROM DCE TIMING SEND TIMING TO DCE SEND TIMING FROM DCE FROM DCE TIMING CLEAR TO SEND TO DCE SIGNAL QUALITY FROM DCE FROM DCE CONTROL SEND SIGNAL GUALITY FROM DCE SIGNAL RATE SIGNAT TO DCE SIGNAL RATE SIGNAT DATA SECONDARY SEND DATA SECONDARY RS TO DCE SIGNAL PARTE INDICATOR DATA TO DCE SIGNAL PARTE SIGNAL SECONDARY RS TO DCE SIGNAL PARTE INDICATOR SECONDARY RS TO DCE SECONDARY RS FROM DCE SECONDARY RS CONTROL LOCAL LOOPBACK TO DCE RE SECONDARY RS TO DCE SIGNAL CODE SELECT STANDEY CONTROL	B					
TERMINAL READY TO DCE ADATA MODE SEND DATA SEND DATA TO DCE FROM DCE FROM DCE TIMING TERMINAL TIMING TERMINAL TIMING TERMINAL TIMING TERMINAL TIMING RECEIVE READY RECEIVE READY FROM DCE RECEIVER READY FROM DCE SIGNAL QUALITY FROM DCE SIGNAL QUALITY SIGNAL QUALITY SIGNAL ARTE INDICATOR SELECT FREQUENCY TO DCE SIGNAL RATE SELECTOR SIGNAL RATE SELEC	г				_ .	
4 DATA MODE FROM DCE 0 SEND DATA TO DCE 0 RECETVE DATA FROM DCE 1 TERMINAL TIMING TO DCE 2 SEAD TIMING FROM DCE 3 REQUEST TO SEND FROM DCE 4 CLEAR TO SEND FROM DCE 5 REQUEST TO SEND FROM DCE 6 CLEAR TO SEND FROM DCE 2 STANAL QUALITY FROM DCE 2 STANAL QUALITY FROM DCE 2 STANAL QUALITY FROM DCE 3 NEW STANAL TO DCE CONTROL 4 SECONDARY RD FROM DCE 5 SECONDARY RD FROM DCE 6 SECONDARY RD FROM DCE 6 SECONDARY RE FROM DCE 6 LOCAL LOOPBACK TO DCE 7 DCE CONTROL 8 SELECT STANDEY TO DCE 8 SELECT STANDEY TO DCE	TR			CONTR	OL	
D RECEIVE DATA FROM DCE DATA TREMINAL TIMING TO DCE TIMING TO DCE TIMING SEND TIMING FROM DCE TIMING TO DCE TIMING TO DCE RECEIVE TIMING FROM DCE TIMING FROM DCE TIMING TO DCE RECEIVE TIMING FROM DCE RECEIVE READY FROM DCE CONTROL August 1 SIGNAL QUALITY FROM DCE SELECT FREQUENCY TO DCE CONTROL August 1 SIGNAL QUALITY FROM DCE SELECT FREQUENCY TO DCE DATA August 1 SIGNAL ARTE INDICATOR FROM DCE SECONDARY RS TO DCE DATA August 1 SS SECONDARY RS TO DCE CONTROL Out 1 SS SECONDARY RS TO DCE CONTROL Out 1 SS SECONDARY RS TO DCE CONTROL Out 2 SS SECONDARY RR FROM DCE CONTROL Out 2 SS SECONDARY RR FROM DCE CONTROL Out 2 </td <td>DM</td> <td></td> <td></td> <td></td> <td></td>	DM					
D RECEIVE DATA FROM DCE DATA TREMINAL TIMING TO DCE TIMING TO DCE TIMING SEND TIMING FROM DCE TIMING TO DCE TIMING RECEIVE TIMING FROM DCE TIMING FROM DCE TIMING RECEIVE TIMING FROM DCE CONTROL FROM DCE FROM DCE FROM DCE RECEIVE READY FROM DCE SELECT FREQUENCY TO DCE CONTROL FROM DCE FROM DCE <t< td=""><td>SD</td><td>SEND DATA</td><td>TO DCE</td><td></td><td></td></t<>	SD	SEND DATA	TO DCE			
SEND TIMING RECEIVE TIMING RECEIVE TIMING RECEIVE TIMING RECEIVE TIMING RECEIVE READY RECEIVER READY RE	RD	RECEIVE DATA		DATA		
RECEIVE TIMING FROM DCE REQUEST TO SEND TO DCE CLEAR TO SEND FROM DCE RECEIVE READY FROM DCE RECEIVER READY FROM DCE SIGNAL QUALITY FROM DCE SIGNAL QUALITY FROM DCE SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR FROM DCE SECONDARY RS TO DCE SECONDARY RS FROM DCE SECONDARY RS FROM DCE CONTROL SECONDARY RS LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE	TT	TERMINAL TIMING	TO DCE			
RECEIVE TIMING FROM DCE REQUEST TO SEND TO DCE CLEAR TO SEND FROM DCE RECEIVE READY FROM DCE RECEIVER READY FROM DCE SIGNAL QUALITY FROM DCE SIGNAL QUALITY FROM DCE SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR FROM DCE SECONDARY RS TO DCE LOCAL LOOPBACK TO DCE LOCAL LOOPBACK TO DCE SELECT STANDBY TO DCE	ST	SEND TIMING	FROM DCE	TIMING		
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	RT	RECEIVE TIMING	FROM DCE		Ī	
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	RS	REQUEST TO SEND	TO DCE		CHAN	
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	CS	CLEAR TO SEND	FROM DCE			
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	RR	RECEIVER READY	FROM DCE		\sim	
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	SQ	SIGNAL QUALITY	FROM DCE	CONTROL	PRIMAR	
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	NS	NEW SIGNAL	TO DCE	CONTROL		
R SIGNAL RATE SELECTOR TO DCE SIGNAL RATE INDICATOR PROM DCE SD SECONDARY SEND DATA TO DCE SE SECONDARY RS TO DCE DATA VE SECONDARY RS TO DCE SS SECONDARY RS FROM DCE R SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE R REMOTE LOOPBACK TO DCE SELECT STANDBY TO DCE CONTROL	SF	SELECT FREQUENCY	TO DCE			
SD SECONDARY SEND DATA SECONDARY RD TO DCE FROM DCE DATA VD SECONDARY RD FROM DCE DATA VS SECONDARY RS TO DCE SS SECONDARY CS FROM DCE VR SECONDARY RR FROM DCE LOCAL LOOPBACK TO DCE A TEST MODE SELECT STANDBY TO DCE SELECT STANDBY TO DCE	SR	SIGNAL RATE SELECTOR	TO DCE			
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	E	SIGNAL RATE INDICATOR	FROM DCE			
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	SSD	SECONDARY SEND DATA	TO DCE	DATA	≿	
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	SRD	SECONDARY RD	FROM DCE	DATA	ĕ⊟	
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	SRS	SECONDARY RS	TO DCE		ΪŻΞ	
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	SCS	SECONDARY CS	FROM DCE	CONTROL	S₹	
LOCAL LOOPBACK TO DCE REMOTE LOOPBACK TO DCE TO DCE TEST MODE FROM DCE SELECT STANDBY TO DCE CONTROL	SRR	SECONDARY RR	FROM DCE		S S	
TEST MODE FROM DCE SELECT STANDBY TO DCE	IL	LOCAL LOOPBACK	TO DCE			
SELECT STANDBY TO DCE CONTROL	RL	REMOTE LOOPBACK	TO DCE	CONTROL		
CONTROL	TM	TEST MODE	FROM DCE			
STANDBY INDICATOR FROM DCE	SS	SELECT STANDBY	TO DCE	CONTR	ור	
	SB	STANDBY INDICATOR	FROM DCE	CONTRO		

¹ RS-449 Interchange Circuits Table

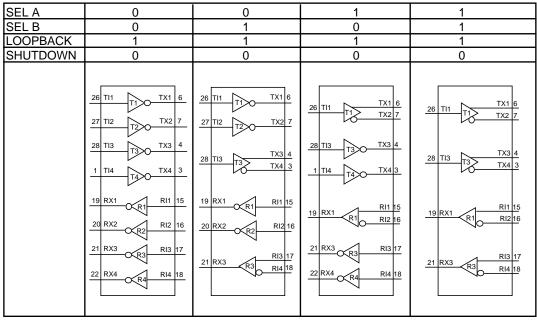


Figure 28. Mode selection for the SP332

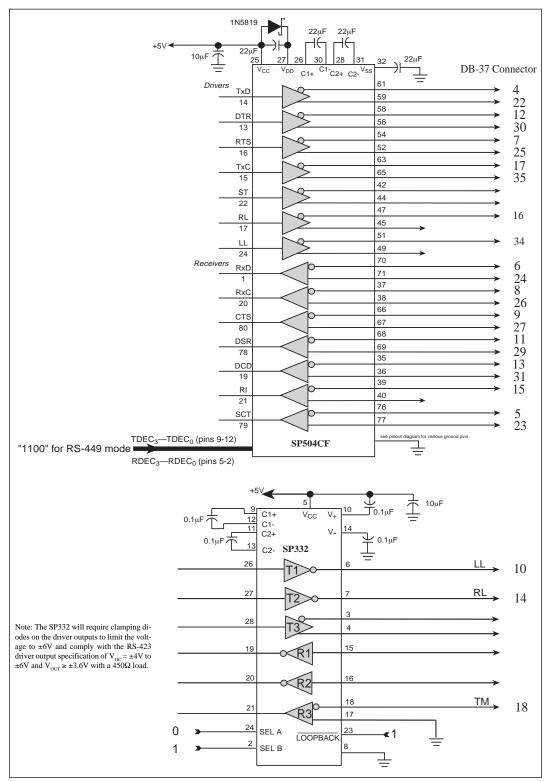
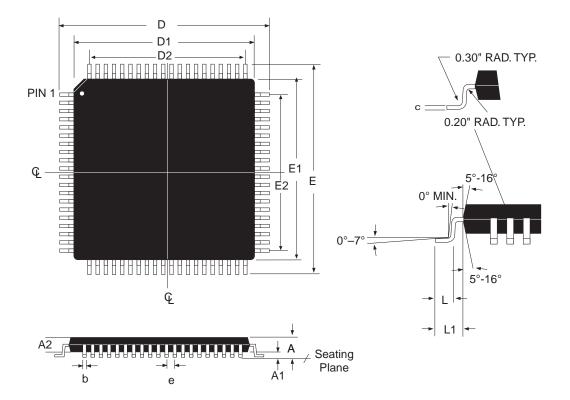



Figure 29. Adding extra differential and single-ended transceivers using the SP332

DIMENSIONS Minimum/Maximum (mm)	80–PIN MQFP JEDEC MS-22 (BEC) Variation			
SYMBOL	MIN	NOM	MAX	
Α			2.45	
A1	0.00		0.25	
A2	1.80	2.00	2.20	
b	0.22		0.40	
D	17.20 BSC			
D1	14.00 BSC			
D2	12	2.35 REI	-	
E	17.20 BSC			
E1	14.00 BSC			
E2	12.35 REF			
е	0.65 BSC			
N		80		

СОММ	COMMON DIMENTIONS							
SYMBL	MIN NOM MAX							
с	0.11		23.00					
L	0.73	0.88	1.03					
L1	1.60 BASIC							

80 PIN MQFP (MS-022 BC)

ORDERING INFORMATION

Temperature Range

SP504MCF

Model

Package Types

REVISION HISTORY

DATE	REVISION	DESCRIPTION
1/27/04	A	Implemented tracking revision.

Available in Lead free packaging. To order add "-L" suffix to the part number. EXAMPLE: SP385EET/ER = standard, SP385EET/ER-L = lead free.

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001